Product Description

 
 

Product Description

Product Parameters

Parameters Unit Level Reduction Ratio Flange Size Specification
047 064 090 110 142 200 255
Rated Output Torque T2n N.m 1 4 19 50 140 290 542 1050 1700
5 22 60 160 330 650 1200 2000
6 20 55 140 300 550 1100 1800
7 19 50 140 300 550 1100 1800
8 17 45 120 260 500 1000 1600
10 14 40 100 230 450 900 1500
2 16 22 60 160 330 650 1200 2000
20 22 60 160 330 650 1200 2000
25 22 60 160 330 650 1200 2000
28 19 50 140 300 550 1100 1800
35 22 60 160 330 650 1200 2000
40 22 60 160 330 650 1200 2000
50 22 60 160 330 650 1200 2000
70 19 50 140 300 550 1100 1800
100 14 40 100 230 450 900 1500
3 160 22 60 160 330 650 1200 2000
200 22 60 160 330 650 1200 2000
250 22 60 160 330 650 1200 2000
280 19 50 140 300 550 1100 1800
350 22 60 160 330 650 1200 2000
400 22 60 160 330 650 1200 2000
500 22 60 160 330 650 1200 2000
700 19 50 140 300 550 1100 1800
1000 14 40 100 230 450 900 1500
Maximum output torque T2b N.m 1,2,3 3~1000 3Times of Rated Output Torque
Rated input speed N1n rpm 1,2,3 3~1000 5000 5000 3000 3000 3000 3000 2000
Maximum input speed N1b rpm 1,2,3 3~1000 10000 10000 6000 6000 6000 6000 4000
Ultra Precision Backlash PS arcmin 1 3~10 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1 ≤1
arcmin 2 12~100 ≤2 ≤2 ≤2 ≤2 ≤2 ≤2 ≤2
arcmin 3 120~1000 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5
High precision backlash P0 arcmin 1 3~10 ≤2 ≤2 ≤2 ≤2 ≤2 ≤2 ≤2
arcmin 2 12~100 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3
arcmin 3 120~1000 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7
Precision backlash P1 arcmin 1 3~10 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3
arcmin 2 12~100 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5
arcmin 3 12~1000 ≤9 ≤9 ≤9 ≤9 ≤9 ≤9 ≤9
Standard backlash P2 arcmin 1 3~10 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5
arcmin 2 12~100 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7
arcmin 3 120~1000 ≤11 ≤11 ≤11 ≤11 ≤11 ≤11 ≤11
Torsional rigidity Nm/arcmin 1,2,3 3~1000 3 4.5 14 25 50 145 225
Allowable radial force F2rb2 N 1,2,3 3~1000 780 1550 3250 6700 9400 14500 30000
Allowable axial force F2ab2 N 1,2,3 3~1000 390 770 1630 3350 4700 7250 14000
Moment of inertia J1 kg.cm2 1 3~10 0.05 0.2 1.2 2 7.2 25 65
2 12~100 0.03 0.08 0.18 0.7 1.7 7.9 14
3 120~1000 0.03 0.03 0.01 0.04 0.09 0.21 0.82
service life hr 1,2,3 3~1000 20000
Efficiency η % 1 3~10 97%
2 12~100 94%
3 120~1000 91%
Noise level dB 1,2,3 3~1000 ≤56 ≤58 ≤60 ≤63 ≤65 ≤67 ≤70
Operating Temperature ºC 1,2,3 3~1000 -10~+90
Protection class IP 1,2,3 3~1000 IP65
weights kg 1 3~10 0.6 1.3 3.9 8.7 16 31 48
2 12~100 0.8 1.8 4.6 10 20 39 62
3 120~1000 1.2 2.3 5.3 10.5 21 41 66

FAQ

Q: How to select a gearbox?

A: Firstly, determine the torque and speed requirements for your application. Consider the load characteristics, operating environment, and duty cycle. Then, choose the appropriate gearbox type, such as planetary, worm, or helical, based on the specific needs of your system. Ensure compatibility with the motor and other mechanical components in your setup. Lastly, consider factors like efficiency, backlash, and size to make an informed selection.

Q: What type of motor can be paired with a gearbox?

A: Gearboxes can be paired with various types of motors, including servo motors, stepper motors, and brushed or brushless DC motors. The choice depends on the specific application requirements, such as speed, torque, and precision. Ensure compatibility between the gearbox and motor specifications for seamless integration.

Q: Does a gearbox require maintenance, and how is it maintained?

A: Gearboxes typically require minimal maintenance. Regularly check for signs of wear, lubricate as per the manufacturer’s recommendations, and replace lubricants at specified intervals. Performing routine inspections can help identify issues early and extend the lifespan of the gearbox.

Q: What is the lifespan of a gearbox?

A: The lifespan of a gearbox depends on factors such as load conditions, operating environment, and maintenance practices. A well-maintained gearbox can last for several years. Regularly monitor its condition and address any issues promptly to ensure a longer operational life.

Q: What is the slowest speed a gearbox can achieve?

A: Gearboxes are capable of achieving very slow speeds, depending on their design and gear ratio. Some gearboxes are specifically designed for low-speed applications, and the choice should align with the specific speed requirements of your system.

Q: What is the maximum reduction ratio of a gearbox?

A: The maximum reduction ratio of a gearbox depends on its design and configuration. Gearboxes can achieve various reduction ratios, and it’s important to choose 1 that meets the torque and speed requirements of your application. Consult the gearbox specifications or contact the manufacturer for detailed information on available reduction ratios.

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Electric Cars, Machinery, Agricultural Machinery, Gearbox
Hardness: Hardened Tooth Surface
Installation: Vertical Type
Layout: Coaxial
Gear Shape: Bevel Gear
Step: Three-Step
Customization:
Available

|

Customized Request

agricultural gearbox

Impact of Gear Ratios on Machinery Performance in Agricultural Gearboxes

The gear ratio in agricultural gearboxes plays a crucial role in determining the performance of machinery. It directly affects the relationship between the input and output speeds and torques. Here’s how gear ratios influence machinery performance:

  • Speed and Torque Conversion: Gear ratios allow for the conversion of speed and torque between the input and output shafts. Higher gear ratios can reduce output speed while increasing output torque, making it suitable for tasks requiring high power.
  • Power and Efficiency: Gear ratios affect the efficiency of power transmission. While reducing the speed through higher gear ratios can increase torque, it’s essential to strike a balance to maintain efficiency. Lower efficiency can lead to energy loss and increased heat generation.
  • Task Adaptability: Different agricultural tasks require varying levels of torque and speed. Gear ratios enable machinery to be adaptable to different tasks by providing the necessary torque for heavy-duty activities like plowing or tilling and higher speeds for tasks like transport.
  • Optimal Performance: Selecting the appropriate gear ratio ensures that machinery operates within its optimal performance range. It prevents overloading the engine or the gearbox, contributing to smoother operation and reduced wear and tear.
  • Productivity and Fuel Efficiency: Proper gear ratios can enhance the overall productivity of agricultural machinery. By optimizing torque and speed, tasks can be completed efficiently, reducing the time and fuel consumption required for operations.
  • Consideration of Terrain: Different terrains and field conditions require adjustments in gear ratios. Steep slopes or heavy soil may necessitate lower gear ratios for increased torque, while flat terrain could benefit from higher ratios for faster operation.
  • Impact on Components: Gear ratios can influence the load distribution on gearbox components. Higher gear ratios might subject components to increased forces and stresses, potentially affecting their lifespan.
  • Operator Comfort: Proper gear ratios contribute to operator comfort by providing the necessary power for smooth operation without straining the machinery. This can lead to reduced operator fatigue and improved safety.
  • Customization: Some modern agricultural equipment offers adjustable or variable gear ratios, allowing operators to fine-tune machinery performance based on specific tasks and conditions.

Choosing the right gear ratio for agricultural gearboxes involves considering factors such as the intended task, soil conditions, and equipment specifications. It’s essential to strike a balance between torque and speed to achieve optimal machinery performance and maximize productivity.

agricultural gearbox

Handling Varying Torque Demands with Agricultural Gearboxes

Agricultural gearboxes are designed to handle the varying torque demands associated with different tasks in farming operations. The torque requirements can vary based on factors such as the type of task, the soil conditions, the terrain, and the machinery’s speed. Agricultural gearboxes are equipped with features that allow them to adapt to these varying torque demands:

  • Gear Ratio Selection: Agricultural gearboxes often come with multiple gear ratios, allowing operators to select the appropriate ratio for the task at hand. Lower gear ratios provide higher torque for tasks that require more force, such as plowing or tilling, while higher gear ratios offer higher speeds for tasks like mowing or transporting.
  • Torque Multiplier: Some agricultural gearboxes are designed with torque multipliers that enhance the torque output from the engine to the wheels or implement. These multipliers are engaged when higher torque is needed, helping the machinery handle heavy loads or challenging terrain.
  • Adjustable Speeds: Many agricultural gearboxes allow operators to adjust the speed of the machinery to match the torque requirements of the task. This flexibility is essential for tasks that involve both high-torque, low-speed operations and high-speed operations with lower torque needs.
  • Power Take-Off (PTO) Options: Agricultural gearboxes often feature power take-off mechanisms that enable the transfer of power from the engine to attached implements. These mechanisms can be designed to provide varying torque outputs to suit different implements, such as rotary tillers, balers, or pumps.

The ability of agricultural gearboxes to handle varying torque demands is crucial for ensuring efficient and effective farming operations. By offering adjustable gear ratios, torque multipliers, and adaptable speeds, these gearboxes empower farmers to optimize their machinery’s performance based on the specific requirements of each task.

agricultural gearbox

Benefits of Using High-Quality Gearboxes in Agricultural Machinery

Utilizing high-quality gearboxes in agricultural machinery offers several advantages that contribute to enhanced performance, durability, and overall operational efficiency. Here are the key benefits:

  • Reliability and Durability: High-quality gearboxes are built to withstand the demanding conditions of agricultural operations. They are constructed using durable materials, precise manufacturing techniques, and stringent quality control measures, ensuring a longer lifespan and reduced downtime due to breakdowns.
  • Optimal Power Transmission: High-quality gearboxes facilitate efficient power transmission from the tractor’s engine to various implements. They minimize power losses through well-designed gear profiles, accurate alignments, and minimal friction, allowing for more effective utilization of available power.
  • Smooth Operation: Gearboxes manufactured to high standards provide smooth and consistent operation. They reduce vibrations, noise, and unnecessary wear, creating a comfortable working environment for the operator and reducing stress on the machinery.
  • Precision and Accuracy: Quality gearboxes offer precise control over speed, torque, and direction changes. This precision ensures accurate implementation of farming tasks, such as seeding, planting, and harvesting, leading to better yield outcomes.
  • Increased Efficiency: High-quality gearboxes minimize energy losses due to friction and inefficient gear meshing. This improved efficiency results in better fuel economy and optimized power utilization, reducing operating costs for the farmer.
  • Compatibility and Adaptability: Top-tier gearboxes are designed to be compatible with a range of agricultural implements and machinery. Their adaptability allows farmers to switch between different tasks without the need for frequent adjustments or component changes.
  • Reduced Maintenance Costs: Quality gearboxes require less frequent maintenance and repair. Their robust construction and precision engineering result in fewer breakdowns and extended maintenance intervals, saving both time and money.
  • Enhanced Safety: Reliable gearboxes contribute to safer operations by preventing sudden failures that could lead to accidents. The smooth operation and predictable performance of high-quality gearboxes reduce the risk of mishaps during agricultural tasks.

Overall, investing in high-quality gearboxes for agricultural machinery ensures improved reliability, smoother operation, higher precision, increased efficiency, and reduced maintenance costs. These benefits ultimately contribute to enhanced productivity and better outcomes for farmers and agricultural operations.

China Standard High Torque Planetary Gearbox for Demanding Robotic Applications   sequential gearbox	China Standard High Torque Planetary Gearbox for Demanding Robotic Applications   sequential gearbox
editor by CX 2024-02-18